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APPLICATION OF BOUNDARY INTEGRAL METHOD TO ELASTOPLASTIC 

ANALYSIS OF V-NOTCHED BEAMS 

by Walte~ Rzasn icki, Alexander Mendelson, Lynn U. Albers, 
and Demetrius D. Raftopoulos* 

Lewis Research Center 

SUMMARY 

The boundary integral equation method was applied in the solution of the plane elas
toplastic problem. The use of this method was illustrated by obtaining stress and strain 

distributions for a number of specimens with a single edge notch and subjected to pure 
bending. The boundary integral equation method reduced the inhomogeneous bihar
monic equation to two coupled Fredholm-type integral equations. These integral equa
tions were replaced by a sYl'tem of simultaneous algebraic equations and solved numer
ically in conjunction with a method of successive elastic solutions. 

INTRODUCTION 

Knowledge of the stress distribution in the neighborhood of a singularity, such as the 
tip of a V -notch in a bar loaded in tension or bending, is of fundamental importance in 
evaluating the resistance to fracture of structural materials. Elastic solutions to vari
ous geometries have been obtained by a number of different methods. Among the more 
effective ones, are the complex variable method (ref. 1), collocation method (ref. 2), 
and finite element method (ref. 3). However, the first two of these methods are not gen
eral enough nor readily adaptable to three-dimensional or elastoplastic problems. And 
the finite element method requires solutions of large sets of equations and fails to give 
sufficiently fine resolution in the vicinity of notch tips. 

The recently developed boundary integral methods (ref. 4) offer an attractive alter
native to other methods of analysis. These methods have a number of advantages as 
listed in references 4 and 5, the most important of which is that nodal points are needed 

*Professor of Mechanical Engineering, University of Toledo, Toledo, Ohio. 



only on the boundary instead of throughout the region as required by finite element 

methods. To date these methods have been used primarily for obtaining elastic solu
tions to various problems. Their extension to elastoplastic problems has been proposed 
in references 4 and 6. However, no elastoplastic solution has heretofore been obtained. 

Reference 5 describes in detail the application of a boundary integral method to the 
solution of the elastic problem of a V -notched beam in pure bending. The present re
port extends this method to the more complicated elastoplastic problems. Solutions of 
such problems by finite elements has not been too successful in obtaining fine enough 

resolution and sufficiently accurate results in the vicinity of the notch tip (ref. 7). The 

present method overcomes these difficulties, since the stress and strain can be com
puted at any arbitrary point in the body from a knowledge of boundary values onlY: 

A 

Aij' Bij , Cij , Dij } 
E .. , F .. , G .. , H .. 

IJ IJ IJ IJ 
I .. , K.. 
IJ IJ 
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SYMBOLS 

area of cell in region R 

coefficients in stress equations (14) 

notch depth 

coefficients in boundary equations (10) 

dimensionless notch depth, a/w 

boundary contour 

Young's modulus of elasticity 

function of plastic strain increments 

path independent contour integral 

stress intensity factor for mode I 

generalized stress intensity factor for mode I 

half length of beam 

strain hardening parameter, ratio of slope of linear strain-hardening 
curve to elastic modulus 

order of stress singularity 

unit vectors normal and tangent to contour C 



P(x, y) 

q(~, 7J) 

s 

T 

x, y, z 

x,Y 

a 

0.· IJ 

E ij 

Eet 

~Ep 

Ex' Ey' E z' Exy 
, 

E ij 

p 

point on contour C or in region R 

point on contour C 

dimensionless load, O"ma:x/O"o 

planar region bounded by closed contour C 

distance between two points having coordinates (x, y)i and (~, 7J)j 

polar coordinates 

length measured along contour C 

convergence parameter 

displacement vector 

displacement in y direction 

width of beam 

rectangular Cartesian coordinates 

dimensionless rectangular Cartesian coordinates, x/w, y /w 

notch angle 

02 02 
Laplace's operator, - +-

ox2 oy2 

04 04 04 
biharmonic operator, - + 2 + -

oX 4 ox2 oy2 oy4 

Kronecker delta 

strain tensor 

equivalent modified total strain 

equivalent plastic strain increment 

components of strain tensor in Cartesian coordinates 

modified total strain tensor 

components of modified total strain tensor in Cartesian coordinates 

Poisson's ratio 

rectangular Cartesian coordinates 

function of r, r2 In r 

equivalent stress 

maximum nominal bending stress 
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9"x' Uy ' uz' uxy components of stress tensor in Cartesian coordinates 

Uo tensile yield stress 

<P function of Airy stress function, v2cp 

cp Airy stress function 

Subscript: 

i, j, k integers 

Superscripts: 

e elastic 

p plastic 

dimensionless quantity 

derivative in outward normal direction, a/an 

METHOD OF SOLUTION 

The problem of determining the state of stress and strain in a plane elastoplastic 
problem can be reduced to solving the following inhomogeneous biharmonic equation 
for the Airy stress function, as shown in reference 8: 

v 4cp = g(x, y) 

+ 

for the plane strain case and 

(1) 

(2) 

(3) 

for the plane stress case where, E P, E P, and EP represent the accumulation of plastic , x y xy 
strain increments from the beginning of the loading history up to, but not including the 
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current increment of the load, and ~E~, ~E~, and ~E~y are the increments of plastic 
strain due to the current increment of load. 

The stress function cp must satisfy appropriate boundary conditions. For the 

problem under consideration (fig. 1), cp(x, y) and its outward normal derivative acp/an 
must satisfy the following boundary conditions (ref. 9): 

cp(x, y) = 0; :E!£. = 0 
an 

cp(x, y) = 0; :E!£.= 0 
an 

along boundary OA and OA' 

along boundary AB and A'B' 

cp(x, y) = - max ~+ax +a2x+~ +a -+ax+~ ; a ~ 3 2 3) ~2 2) 
w 3 3 max 2 2 (4) 

along boundary BC and B'C' 

a w2 
cp(x, y) = max ;:E!£. = 0 

6 an 
along boundary CD and C'D 

To solve equation (1) by means of the boundary integral method, use is made of 

Green's second theorem to reduce this equation to coupled integral equations, as shown 

in references 4 and 9. The result is 

for peR (5) 

for P C C (6) 

and 
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for peR 

1T4>(X, y) - f f g(~, 1])ln r d~ d1] = 1 ~ ~ (In r) - 04> In rJ ds 
J JR cLan an 

for P C C 

where 

p == r2 In r 

and r(x, y; ~,1]) is the distance between any two points P(x, y) and q(~, 1]) in the re

gion R bounded by the curve C, such that peR + C and q C C (fig. 2). 

Equation (5) would, for a known function g(x, y), give us directly a solution to the 
biharmonic equation (1) provided the functions cp(x, y), ocp(x, y)/an, v2cp(x, y), and 
a [v2cp(x, y)]/an were known on the boundary C. 

(7) 

(8) 

However, only the stress function cp and its outward normal derivative acp/an are 

specified (eq. (4)). The values of v 2cp == 4> and a(v2cp)/an == a4>/an on the boundary 
must be compatible with the given values of cp and acp/an. To assure this compatibil
ity, we have to solve the system of coupled integral equations (6) and (8), which contain 

the unknown functions 4> and a4> / an. 

Once the values of 4> and a4>/an on the boundary C of region R are known we 
can proceed with the ca~culation of the stress field in the region R utilizing equation (5) 

and the equations which define cp, namely, 

i!£ a = , 
x 2 

ay 

a2 
(] =-~ 

xy ax ay 

The calculation of the function g(x, y), which is obtained iteratively, will be dis
cussed subsequently. 

NUMERICAL PROCEDURES 

Solution of the Integral Equations 

Since it is generally impossible to solve the system of coupled integral equations 
analytically, a numerical method is utilized in which the integral equations (6) and (8) 
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are replaced by a system of simultaneous algebraic equations. 

For simplicity of notation the normal derivatives are denoted by prime superscripts. 

The boundary is divided into n intervals, not necessarily equal, numbered consecu
tively in the direction of increasing s. The center of each interval is designated as a 

node. The values of q, and q,' are assumed constant on each interval and equal to the 

values calculated at the node. 

In similar manner the interior of region R is covered by a grid, containing m 

cells. The cells do not have to have equal areas. Their nodal points are located at the 

centroids. The value of g(~, 'f}) is assumed constant over each cell and equal to the value 

calculated at the centroid. The arrangement of boundary and interior subdivisions is 
shown in figures 3 and 4. 

Using these assumptions, equations (6) and (8) can be replaced by a system of 2n 

simultaneous algebraic equations with 2n unknowns, that is, q,i and q,i 

rrq,. -
1 

m n 

L (a .. q,. + b .. q,~) 
IJ J IJ J L In rik(gA)k = 

k=1 j=1 
(10) 

m n 
4rr<p. -

1 ~ Pik(gA)k = 
k=1 

L (cijq,j + dijq,j + eij<pj + fij<Pj) 
j=1 

where i = 1,2,3, ... , n, r ik 

cell, Ak is the area of the kth 

is the distance from ith node to the centroid of the kth 

cell] and 
.;. 

a .. 'i = f (In r .. )' ds 
IJ j IJ 

b.. = - f In r .. ds 
IJ j IJ 

c.· = /p!. ds IJ . IJ 
J 

(11) 

d .. = -1 p .. ds 
IJ j IJ 

e .. = j(V2p .. )' ds 
IJ j IJ 

f .. = - J v 2p .. ds 
IJ j IJ 
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where integration is taken over the jth interval, and r ij is the distance from ith node 

to any point in the /h interval. The normal derivatives in equations (11) are taken on 
the j th interval. 

For curved boundaries the coefficients given by equations (11) can be evaluated, if 

necessary, by Simpson's rule for i * j. For i = j, because of the singular nature of 
the integrand, the integrals for the coefficients must be evaluated by a limiting process. 

For boundary intervals, such as for the problem treated herein, which can be repre
sented by straight lines a closed form solution can be obtained for these coefficients. 

Boundary equations (10) expressed in matrix form become 

[aij - °ij1T] [bij] (<1>~ [In r ik] [0] [0] [(gA)k] 
nXn nXn nx1 nXm nXn m X 1 

=.: - (12) 
[c ij ] [dij] [<1> ~] [Pik] [e .. - 0 .. 41T] [cpj] J IJ IJ 
nXn nXn nx1 nXm nXn n xl 

[cpjJ 
n xl 

Thus, the problem is reduced to the solution of the following matrix system: 

[B]{X} = {R} (13) 

where [B] is 2n x 2n matrix and {X} and {R} are 2n x 1 column matrices. 

Matrix [B] is dependent only on geometry, that is, number of nodes and their dis

tribution on the boundary. Since the matrix {R} contains the nonlinear function g(~, 1}), 
which depends on the stress field and therefore on matrix {X}, an iterative process will 

be used to obtain the solution. 

To calculate stresses, at any nodal point in the region R, from the stress function 
cp, we need not perform any numerical differentiation. Equation (5) can be differentiated 

under the integral sign and once <1> and <1>' are known on the boundary the stresses can 

be obtained by the same type of numerical integration as in equations (10). Applying 

equations (9) to equation (5) yields for the case of a rectangular grid the following stress 
equations: 
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{[ ~2 + O~\ 20 O]} 
8.ux (x, Y)i = In\ x 4 ) + ~ tan -1 0; - 1 (gA) i=k 

n 

+ ~ (AI· J. cpJ. +Bl·J·CP~ +C .. CP. +D .. cp~) /-J J 1J J IJ J 
J=l 

(14) 

n 
+ ~ (-A .. cp. - B .. cp~ + E .. cp. + F .. cp·~) L..J IJ J IJ J IJ J, IJ J 

j=l 

m 

-8rra (x, y). = I [ 2(x - S)(y - !}) J 
xy 1 2 2 

k=l (x -~) + (y - TJ) ik 

n 
(gA)k + ~ (G.J·CPJ· + H . . cp~ + I..cp. + K. .CP~) LJ 1 IJ J IJ J IJ J 

j=l 

i*k 

where now i = 1,2,3, ... , m and refers to the centroid of the ith cell, Ox and 0y 

represent, respectively, x-directional and y-directional dimension of the cell. The 

coefficients ~j' Bij , Cij , Dij , Eij , F ij , Gij , Hij , Iij , and Kij are obtained by appro
priate differentiation under the integral sign of the coefficients given by equations (11) 

and are listed in appendix A. 

The stress function cP is not constant on the loaded boundaries BC and B'C'., The 
assumption that it .is piece-wise constant may lead to appreciable errors in the numerical 
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results. To eliminate this source of error, the summations given in equations (10) 
and (14) for intervals lying on the loaded boundaries and involving the stress function are 
replaced by direct integration. 

Boundary Interval and Interior Grid Size 

The number of nodal points prescribed for the boundary is theoretically unlimited. 

However, computer storage capacity for the computer used and difficulties associated 
with inversion of large matrices limited the order of the coefficient matrix [BJ of equa
tion (13) used herein to 140. 

Because of geometric and loading symmetry about the x-axis, it is possible to re
duce the number of unknowns. For 2n total number of nodal points the number of equa

tions and unknowns, <Pi and <pi, is reduced from 4n to 2n. Additional. reduction in the 
number of unknowns is accomplished by taking into consideration St. Venant's effect at 

the loaded boundaries (ref. 2). 
Since the vicinity of the crack tip is of greatest interest, a fine nodal spacing along 

the notch was chosen. To reduce the error introduced by the change in the interval size 
(ref. 10) around boundary points A and A' and at the same time to obtain fine resolu

tion at the tip of the notch, the boundary along the notch was divided into a number of 
intervals progressively decreasing in length. The rate of change in the interval length 
and the resulting length of the smallest interval was found to have a great influence on 
the stress field in the vicinity of the tip of the notch. The rate of change in the in~erval' s 
length along these boundaries was optimized by the method presented in reference! 5. 
For the cases considered optimum ratios of the lengths of two consecutive boundary in
tervals were found to be in the range of 1. 08 to 1. 10. The resulting smallest dimension

less boundary interval length varied from 0.0001 to 0.0002. The nodal arrangement 
shown in figure 5 was used for all cases considered, resulting in a set of 140 equations 
containing 140 unknowns. Note that the corner points are always designated as interval 

points, never as nodal points, thus eliminating discontinuous functions from numerical 

analysis. 

The choice of the size of the grid, which has to cover the region where plastic flow 
is expected to occur, is of utmost importance. A too coarse grid will not detect changes 

in the values of plastic-strain for small loading increments. A too fine mesh size may 

result in distorted values of second-order derivatives of plastic strains, which appear 
in the function g(x, y). The loading increment and the grid size are related to each 

other. A bad choice of either of them could result in the divergence of the iterative 

process. To allow the maximum of grid points to be within the expected plastic zone, a 
variable grid spacing was chosen. The grid used for plane strain conditions was finer, 
in general, than the one used for plane stress case. 

10 



The interior region, where plastic flow is expected, was divided into r x s rec
tangular cells. Due to symmetry about the x-axis, the number of unknown functions g, 

appearing in the boundary equations (10) and stress equations (14), was reduced from 

r x s to m = r x (s + 1)/2, where now the coefficients of these functions represent the 
sum of the effect of left-hand and right-hand sides of the plastic field. Because of com
putation time limitations, the grid was arranged in 27 x 23 cell pattern, resulting in 

the number of unknowns g to be equal to 324. By increasing the number of unknowns to 

400, the computation time for one iteration almost doubled. The smallest cells, located 
in the vicinity of the tip of the notch, have dimensions 0x/w = O. 004; Oy/w = 0.008 for 

plane strain cases, and 0x/w = 0.004, Oy/w = 0.016 for plane stress cases. 

Cells with centroids outside the boundary of the beam above the tip of the notch were 
discarded and corresponding values of g were set equal to zero. A typical interior grid 
is shown in figure 5. 

Central difference equations, given in appendix B, were used to evaluate g(x, y) 
only for interior plastic cells, that is, where there was plastic flow at all eight adjacent 

cells. For noninterior cells the function was taken as an average of values of g at 
neighboring plastic cells. Other methods of dealing with g at centroids of noninterior 
plastic cells, such as backward differences of extrapolation, led to oscillation or di ver
gences of the iterative process. 

Method of Successive Elastic Solutions 

The solution to this boundary value problem is obtained by an iterative process, 

known as the method of successive elastic solutions described in detail in reference 8. 

This method, applied to the present problem, proceeds as follows. The loading path is 
divided into a number of sufficiently small increments Aamax, i' The g function in the 
inhomogeneous equation (1) is thought of as a sum of Agi functions, each corresponding 

to its load increment Aamax, i' Each Agi is defined in terms of derivatives of the cur

rent plastic strain increments, AE~, AE~, and AE~y' which in turn depend, through 
equivalent plastic strain increment AE p' on the equivalent stress a e, i-1 associated 
with the previous load. The current plastic strain increments change iteratively as 

changing Agi affects the stress field. 
The iterative procedure for determining plastic strain increments for each load in

crement is as follows: 

(1) Select a value of load amax i' , 
(2) Guess initial values of plastic strain increments. For the first load increment, 

assume all values to be equal to zero. Otherwise, use the converged values from the 

previous load increment. 
(3) Calculate gi = gi-1 + Agi' 
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(4) Calculate cJ?i and cJ?i from boundary equations (10). 

(5) Calculate the stresses from stress equations (14). 

(6) Calculate modified total strains Etj and the equivalent modified total strain Eet 
from the following equations: 

, e p 
E·· = E·· + ~E·· IJ IJ IJ 

E = V2 
et 3 

( ' , )2 (' , )2 (' ,)2 6,2 Ex - E Y + Ex - E Z + E Y - E Z + E xy 

where Eij are the elastic strains computed from the stresses obtained in step (5). 

(7) Calculate the equivalent plastic strain increment from 

with 

for plane strain case, and 

E - ~ .!....:!:....g a . 
et 3 E e,I-1 

~Ep = (da) 
1+~~~ 

3 E dE p i-1 

a = e 

(15) 

(16) 

(17) 

(18) 

(19) 

for plane stress case, where a e i-1 is the value of the equivalent stress at the end of , 
the previous increment of loading. For the first load increment and also for the case 

where there was no plastic flow under previous loading, ae i-1 is equal to the yield , 
stress aO' For the case of linear strain hardening equation (17) becomes 

E _~.!....:!:...l!. a . 
et 3 E e,I-1 

~E =----=----.,;;;;;;......---
P 1 + ~ (1 + /l) ~ 

(20) 

3 1 - m 
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(8) Calculate a new set of plastic strain increments from 

(9) Repeat steps (3) to (8) until the plastic strain increments converge. 
(10) Sum the plastic strain increments and return to step (1). 

(21) 

It should be noted at this point that the aforementioned procedure can be applied only 
where there is no unloading. Once the successive approximation procedure has con
verged, the stresses and strains are known everywhere in the beam. 

The iterative process is illustrated by the flow diagram of figure 6. 

Convergence 

The convergence criterion is defined as an arbitrary maximum difference between 
successive values of one or more iterants. For the plastic field containing many points 
at which convergence is required, it is reasonable to set the convergence criterion 
based on an average value of the change in plastic strain increments. For the problems 
considered in this report, the convergence criterion was based on the convergence of 
plastic strain increments AE~ and was defined as 

n 

~ "IAEP - AE P I (] L.J y, k y, k-1 j 
o j=1 

---------------------<T 
n 

(22) 

where k refers to current iteration, n refers to number of plastic grid points for cur
rent iteration, and T is an arbitrary convergence parameter. 
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The computations were performed on a digital computer using a FORTRAN IV pro
gram with single-precision arithmetic. The matrix system given by equation (13) was 
solved using the modified Gauss elimination method, which utilizes pivoting and forward 
and backward substitutions. 

The convergence parameter T was set to 0.003 or 0.005 depending on the load in

crement. Decreasing the convergence parameter T to 0.001 resulted in change in 
plastic strain increment values of approximately one in the third or fourth significant 
figure. For higher order accuracy, which does not appear to be necessary from a prac

tical point of view, the computation time would be prohibitively long. The fact that the 

method of successive elastic solutions converges to the right answer has been shown by 
many examples in references 8 and 11. 

RESULTS AND DISCUSSION 

A number of beam problems were solved for both plane strain and plane stress 

cases. These included notch depth to beam depth ratios of O. 3 and O. 5, notch angles of 
30 and 100

, strain hardening parameter values of 0.05 and O. 10. In addition, calcula
tions were performed using the actual stress-strain curve of a 5083-0 aluminum alloy. 
For all cases Poisson's ratio was set at 0.33. 

The load increment size used was necessarily a compromise between the accuracy 
desired and computational time required for convergence. For strain hardening param
eter m = 0.05 the load increment size ~q was taken equal to 0.05; while for m = O. 10, 
~q = O. 10. For the case of a 5083-0 aluminum alloy, where the actual stress-strain 
curve (fig. 25) was used, the load was incremented by ~q = 0.025. 

For the beam with dimensionless notch depth a = 0.5 the minimum load required 
to produce plastic flow at the most highly stressed grid points was found to be q = O. 30, 
and for a = O. 3 the initial load was found to be q = O. 50. The maximum load consid
ered was q = 0.7 for the a = O. 5 cases, and q = 0.9 for the a = 0.3 cases. In the 
process of solving the aforementioned problems, the case with strain hardening param
eter m = O. 05 required approximately 50 iterations for each increment of load (i. e. , 

~q = O. 05) for the relatively fine convergence parameter used. For cases where the 
strain hardening parameter m = O. 10 the average number of iterations needed for each 
increment of load (i. e., ~q = O. 10) was reduced to 40, while use of the actual stress
strain curve re~ulted in convergence in approximately 10 iterations for the plane strain 
case and in 20 iterations for the plane stress case. 

Typical results of the computations are presented in figures 7 to 27 and tables I 

and II. Complete detailed results are given in reference 9. 
The growth of the plastic zone with load is shown in figures 7 to 14. It is seen that 

the shapes of the elastoplastic boundaries remain similar to each other as the load in-
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creases. As expected, plastic flow starts around the tip of the notch and as the load in

creases appears also at the boundary opposite the notch. Comparison of figures 11 

and 12 with figures 13 and 14 shows that for the same loads the size of the plastic zones 
for plane strain are considerably smaller than for plane stress. 

The equivalent stress contours in the vicinity of the notch for maximum applied 

loads are plotted for two cases in figures 15 and 16. The curves are the loci of all 

pOints of constant equivalent stress. The curves corresponding to U /Uo = 1 indicate 
the boundary of the plastic zone. In addition, an elastic yield locus representing the 

elastoplastic boundary based on the elastic solution is shown in each case. Since this 

is commonly assumed to be the boundary of the plastic zone, we can see that for plane 
strain cases this assumption introduces considerable error along the x-axis. Along 

this axis the lengths of plastic zones obtained by elastoplastic and elastic solutions vary 

by a factor of about two. 

Stresses and strains were calculated in all cases for interior grid points. Typical 
results of these calculations are given in figures 17 to 22. 

The order of the stress singularity n was determined for each case by the method 

described in reference 5. The results are given in tables I and II. In case of plane 
strain conditions, the stress singularity decreases slowly as loading increases. In the 
case of the plane stress condition we have a sudden drop in n from its elastic value as 
plastic flow appears. Subsequently n slowly increases approaching a limit as the load 

increases. 
The product of y-directional stress and total strain was calculated for various 

cases. The order of singularity of that product was determined by plotting In{UyE y} 

against In r and by making a least squares fit of a straight line through the plotted 

points. It was found to be very close to unity for all cases considered. 
In the case of an elastoplastic problem the stress intensity factor KI defined in 

reference 2, must be generalized to the form 

For linear .elastic behavior Kj is identical with Kr 

{23} 

Variation of the dimensionless generalized stress intensity factor with load is shown 
in figure 23 for the case of a specimen with notch depth of a = O. 5 and Q! = 100

, under 

plane strain condition and two values of strain hardening parameter m. The stress 

intensity factor shows no significant increase over the linear elastic value up to an ap
plied load of q = 0.40. Above this load Ki' increases progressively for both mIs, at 

the faster rate for lower strain hardening parameter. 
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The y-directional notch opening displacement was obtained for each case by numer

ical integration of the relation E·· = (1/2)(u .. + u .. ) along straight line paths. For 
1J 1,] J, 1 

each case a number of paths were chosen through the plastic region near the notch, and 
the resulting displacements were averaged. In general, the notch opening displacement 
varies linearly with the load until the plastic zone is established at the boundary oppo

site the notch. Then it increases rapidly, reaching values several times that which 

would be calculated from the elastic solution. 
In order to verify in part the accuracy of the method used, a comparison of notch 

opening displacements was made with experimental results obtained by Bubsey and Jones 

(private communication from R. T. Bubsey and M. H. Jones of NASA Lewis Research 

Center). The specimen used in this experiment, made of aluminum 5083-0 with a length 
to width ratio of 4 and a crack length a = 0.5, was subjected to three-point bending. The 
stress-strain curve for this specimen is shown in figure 25. The experimental results 

as shown in figure 24 are in good agreement with numerical results obtained herein. 

Finally, the J integral was evaluated for several cases by using relations given in 
reference 5. As in notch opening displacement calculations, straight line paths were 

chosen through the plastic zone near the tip of the notch. The integral was evaluated 

using values of stresses, strains, and displacements at cell centroids for a number of 
paths. The path independence of J was not conclusive, since the results varied up to 
15 percent from the averaged value. It is possible that the results obtained herein do 

not indicate that the path independent property is lost but rather that the field values of 

the displacements are not calculated with sufficient accuracy. 
The average values of the dimensionless J integral as a function of load are plotted 

in figure 26 for a case of a specimen with a 100 edge notch, a = O. 5, m = O. 05, and plane 

strain condition. At the start of plastic flow J increases rapidly with load. This is 
followed by almost linear variation with additional load. 

The relations between the J integral and stress intensity factor K
J 

developed for 

linear elasticity are obviously not applicable for the elastoplastic problem. By plotting 
,...,., f"'t<,J 2 I"'<J ~ 

the J/Kj ratios as a function of load q, the relation between the J integral and the 
dimensionless generalized stress intensity factor Kj is obtained. Typical plots are 
shown in figure 27. In all cases, the ratio J/Kj2 remains almost equal to elastic value 

of O. 89 for plane strain or 1. 0 for plane stress and increases sharply at the load corre
sponding to the appearance of the plastic zone at the boundary opposite the notch. Once 

the transition occurs the ratio increases approximately proportionally to the load incre
ment. 
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CONCLUSIONS 

The boundary integral equation method proved to be capable of giving very detailed 

results such as stress and strain distributions around the tip of the notch and, related 

to them, the shapes of plastic zones. This was accomplished using a relatively small 
number of unknowns. 

The obtained results also provide the information on the effect of strain hardening 

and on the differences that occur between plane stress and plane strain solutions. The 

singular nature of stresses and strains in the vicinity of the tip of the notch was con
firmed. The order of singularity for the strain energy density was found to be unity, 

which is consistent with results previously obtained by other investigators. 

The generalized stress intensity factor was introduced and calculated for several 

cases. The path independence property of the J integral was qualitatively confirmed 
and the relation between J and the generalized stress intensity factor was graphically 

extended to materials deforming according to the Prandtl-Reuss theory of plasticity. 

The presence of a singularity at the tip of the notch makes accurate answers very 
difficult to obtain. Nevertheless good agreement was obtained between the calculated 
results and experimentally measured notch opening displacement as shown in figure 24. 
Some improvement in the solution techniques and further investigation of the influence of 

the boundary nodal spacing and interior grid size on the resulting stress and strain 
fields, and therefore, on the notch opening displacements and J integrals, may be 
desirable. 

Lewis Research Center, 
National Aeronautics and Space Abinistration, 

Cleveland, Ohio, January 7" 1974, 
501-21. 
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APPENDIX A 

COEFFICIENTS OF THE STRESS EQUATIONS 

The coefficients appearing in stress equations (14) are given by the following rela

tions: 

a2 
A .. = - (eoo) = 4 
. IJ 2 IJ 

ay 

a 
2 2 (x. -~) - (y. - 71) 

1 1 '/ 
ds 

'0
2 

Boo : - (foo) : 4 
IJ 2 IJ . oy 

2 2 (y. - 7}) - (x. - ~) 
lIds 

r 2 2J2 l(xi -~) + (Yi - 7}) 

J" { 2 J '02 a 2 2 2(y i - 7}) 
C .. : - (c .. ) : - ln~x. -~) + (y. - 7}) J + ds 

IJ IJ r 1 1 2 
ay2 . on (xi - ~)2 + (Yi - 7}) 

J 

it 2 j '02 2 2 2(y i - 7}) 
Doo : - (d .. ) : - lnr(x. -~) + (y. - 7}) n + + 1 ds 

IJ IJ L 1 1 J 2 
ay2. (xi - ~)2 + (Yi - 7}) 

J 

J f 2 } '02 a 2 2 2(xi - ~) 
E .. : - (coo): - lnr(x. -~) + (y. - Ti) ] + ds 

IJ 2 IJ an L 1 1. 2 2 
ax. (Xi -~) + (y i - 7}) 

J 

i{ 2 } a2 2 2 2(xi - ~) 
F .. : - (d .. ) = - lnr(x. -~) + (y. - 7}) ] + + 1 ds 

IJ IJ L 1 1 2 
ax2 . " (Xi - ~)2 + (Yi - 7}) 

J 
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a2 
G·. := -- (e .. ) = -8 

IJ ax ay IJ 
a (x. - ~)(y. - TJ) 

1 1 ds 

a2 f (x. - ~)(y. - TJ) 
H .. = -- (f .. ) = 8 lids 

IJ ax ay IJ 2 
. [<xi - ~)2 + (Yi - TJ)2] 
J 

I .. :=L(c .. ):= 2/ 
IJ ax ay IJ 

j 

a
2 J ~.:=- (d .. ):=-2 

J ax ay IJ 

j 

(xi - ~)(Yi - TJ) 
-~-----.;~-- ds 

(xi - ~)2 + (Yi - TJ)2 

The evaluation of these integrals is given in reference 9. 
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APPENDIX B 

NUMERICAL REPRESENTATION OF THE FUNCTION OF PLASTIC STRAINS g(x, y) 

Before we can proceed with the numerical solution, it is necessary to represent the 

function of plastic strains g(x, y), given by equation (2) or (3), by corresponding finite

difference equations. 

The finite-difference net for grid station (r, s) is shown in figure 28. For a given 

function f = f(x, y), by use of central differences, we can obtain the following expres
sions for derivatives of this function: 

f = (3 (f - f ) + (3 (f - f ) x r-l s r-l s r s r+l s r+l s r s , " , , , 

(Bl) 

where subscripts x, y denote differentiation with respect to variable x or y, r is a 
row index, s is a column index, and the coefficients are given by the following relations: 
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a = 2 
r-l, 8 t.X t.X 

T 

a - 2 
r+l,8 - t.X t.X

B 

a = 2 
r,8-1 t. t. 

Y YL 

a = 2 
r,8+1 t.y t.YR 

t.XB 
[3 1 =----r- ,8 t.X t.X 

T 

t.XT [3 --~-
r+l, 8 - t.X t.X 

B 

6YR 
[3 =---.:;;.;;..-
r,8-1 t.y t.YL 

y r -1 8 = -Y r -1 8 -1 - Y r -1 8+ 1 , , , 

Yr 8-1 = -Yr -l 8-1 - Yr+l 8-1 , , , 

(B2) 

21 



where box, boy, boXT, boXB, AYL' and AYR are distances as defined in figure 28. When 
relations (B1) and (B2) are used, the function g(x, Y) can be expressed by following 
finite-difference expressions: 

g(x, y} = gE tG'r-l s (E~ + AE~) - (G'r-l s + G'r+l S)(E~ + boE~) 
1 2 ,~ r-1 s ' , r s - M ' , 

- _E_ [ar S-l(E~ + boE~) - (G'r s-l + G'r s+1)fE~ + AE~) 
1 + M' r, s -1' ,~. r, S 

(B3) 

+ 2E [Y r-l s-l(Eiy + AEiy) + Y r-l S(E~y + AEiy ) 
2' r-l s-1' r-1 s 1 - M ' , 

+Y ~P+AEP) +Y f€P+A€P) 
r-1, s+1 r xy xy r-1, s+1 r, s-1 \' xy xy r,6-1 

Plane strain 
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(B4) 

Plane stress 
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TABLE 1. - ORDER OF STRESS SINGULARITY n AT THE TIP OF THE NOTCH 

FOR A SPECIMEN WITH A SINGLE EDGE NOTCH SUBJECTED TO 

Dimension- Notch 

less notch angle, 

depth, QI, 
~ 

a deg 

0.3 3 

.3 10 

.5 10 

.5 10 

PURE BENDING - PLANE STRAIN 

[Poisson's ratio /l = O. 33J 

Strain hard- Elastic Dimensionless load, q 
ening pa-

rameter, 0.4 0.5 0.6 0.7 

m 

O. 10 0.4999 ----- 0.488 0.490 0.487 

.10 j ----- .496 .497 .492 

.05 0.499 .496 .480 .472 

.10 .496 .498 .480 .478 

TABLE II. - ORDER OF STRESS SINGULARITY n 

AT THE TIP OF THE NOTCH FOR A SPECIMEN 

WITH A SINGLE EDGE NOTCH SUBJECTED 

TO PURE BENDING - PLANE STRESS 

[Dimensionless notch depth a = O. 3; notch angle 

QI = 100
; strain hardening parameter m = O. 10; 

Poisson's ratio J.1. = O. 33.] 

Elastic Dimensionless load, q 

O. 5 0.6 0.7 0.8 0.9 

0.4999 0.419 0.434 0.448 0.451 0.458 

0.8 

0.473 

.480 
-----

-----

0.9 

0.475 

.487 
-----
-----
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Figure 1. - Single-edge V-notched beam subject to 
pu re bendi ng load. 

Y.17 

Figure 2. 7 Sign convention for simply connected region R. 



i = n 

Figure 3. - Boundary and interior region sub
divisions for PIx, y) c c. 

Figure 4. - Boundary and interior region sub
divisions for P(x,y) C R. 
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Figure 5. - Distribution of boundary subdivisions and typical interior grid for elastoplastic 
problem. (All distances are made dimensionless with respect to beam width w.) 
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Figure 7. - Growth of plastic zone size with load for specimen with single edge notch subjected to pure 

bending. Plane strain; dimensionless notch depth if = O. 5; notch angle a = 100; strain hardening 
parameter m • 0.05; Poisson's ratio I.l' O. 33. 
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Figure 8. - Growth of plastic zone size with load in vicinity of notch for specimen 

with single edge notch subjected to pure bending. Plane strain; dimensionless 
notch depth if· O. 5; notch angle a' 100; strain hardening parameter 
m • 0.05; Poisson's ratio I.l' 0.33. 
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Figure 9. - Growth of plastic zone size with load for specimen with single edge notch subjected to pure 
bending. Plane strain; dimensionless notch depth a· 0.5; notch angle a· 10°; strain hardening 
parameter m • 0.10; Poisson's ratio ~. 0.33. 
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Figure 10. - Growth of plastic zone size with load in vicinity of notch for specimen 
with single edge notch subjected to pure bending. Plane strain; dimensionless 
notch depth a· O. 5; notch angle a' 10°; strain hardening parameter 
m • O. 10; Poisson's ratio ~. 0.33. 
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Figure 11. - Growth of plastic zone size with load for specimen with single edge notch subjected to pure 
bending. Plane strain: dimensionless notch depth a' O. 3; notch angle a • 100 : strain hardening 
parameter m • 0.10: Poisson's ratio ~. O. 33. 
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Figure 12. - Growth of plastiC zone size with load in vicinity of notch for specimen 
with single edge notch subjected to pure bending. Plane strain; dimensionless 
notch depth a' 0.3; notch angle o· UP; strain hardening parameter 
m • O. 10; Poisson's ratio ~ • 0.33. 
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Figure 13. - Growth of plastic zone size with load for specimen with single edge notch subjected to pure 

bending. Plane stress; dimensionless notch depth a' o. 3; notch angle a • 100; strain hardening 
parameter m' O. 10; Poisson's ratio (J' 0.33. 
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Figure 14. - Growth of plastic zone size with load in vicinity of notch for a specimen 
with single edge notch subjected to pure bending. Plane stress; dimensionless 
notch depth 'if. 0.3; notch angle a' 100; strain hardening parameter m • 0.10; 
Poisson's ratio (J' O. 33. 
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Figure 15. - Dimensionless equivalent stress contours in vicinity of notch for specimen 
with single edge notch subjected to pure bending. Plane strain; dimensionless load 
IT· 0.9; dimensionless notch depth if = 0.3; notch angle a = 100; strain hardening 
parameter m = O. 10; Poisson's ratio II· O. 33. 
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Figure 16. - Dimensionless equivalent stress contours in vicinity of notch for specimen 
with single edge notch subjected to pure bending. Plane stress; dimensionless load 
q = 0.9; dimensionless notch depth if· O. 3; notch angle a· 100; strain hardening 
parameter m = O. 10; Poisson's ratio II = O. 33. 
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Figure 17. - Dimensionless x- and y-directional stress 

distribution in vicinity of notch for specimen with 
single edge notch subjected to pure bending. Plane 
strain; dimensionless notch depth a· O. 5; notch 
angle a • 100; strain hardening parameter m • 0.05; 
Poisson's ratio ~. O. 33. 
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Figure 18. - Dimensionless x-directional stress distribu
tion along x-axis for specimen with single edge notch 
subjected to pure bending. Plane strain; dimensionless 
notch depth if· O. 5; notch angle a = 100; strain hard
ening parameter m • 0.05; Poisson's ratio II' 0.33. 
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Figure 19. - Dimensionless y-directional stress distribu
tion along x-axis for specimen with single edge notch 
subjected to pure bending. Plane strain; dimensionless 
notch depth a· O. 5; notch angle a = 1(1J; strain hard
ening parameter m • 0.05; Poisson's ratio II = 0.33. 
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Figure 20. - Dimensionless y-directional total strain distribution 

along X· constant lines in vicinity of notch for specimen with 
single edge notch subjected to pure bending. Plain strain; dimen
sionless load q. 0.7; dimensionless notch depth a· 0.5; notch 
angle a • 100; strain hardening parameter m • 0.05; Poisson's 
ratio ~. O. 33. 
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Figure 21. - Dimensionless y-directional total strain distribution along If· constant lines in vicinity 
of notch for specimen with single edge notch subjected to pure bending. Plain strain; dimension
less load Q' 0.7; dimensionless notch depth a' 0.5; notch angle a' 100; strain hardening pa
rameter m' 0.05; Poisson's ratio 1.1' O. 33, 
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(b) Dimensionless y-directional total strain as a function of x. 
Figure 22. - Dimensionless x- and y-directional total strain distribution along 

x-axis for specimen with single edge notch subjected to pure bending. Plane 
strain; dimensionless notch depth a· 0.3; notch angle a = 100; strain hard
ening parameter m' 0.10; Poisson's ratio ~ = 0.33. 
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Figure 23. - Variation of dimensionless generalized stress intensity factor with load for 
specimen with single edge notch subjected to pure bending. Plane strain; dimensionless 
notch depth a· 0.5; notch angle a' 100; Poisson's ratio ~ • 0.33. 

- - - Test data obtained lor three-point bending of 
edge cracked specimen with length to width 

6 ratio of 4, dimensionless crack depth of 
0.5. and Poisson's ratio of O. 33 (private 
communication from R. T. Bubseyand 
M. H. Jones of NASA Lewis Research 

5 Center) 
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Figure 24. - Dimensionless plqne strain y-directional notch opening displacement for 
specimen with single edge notch subjected to pure bending. Dimensionless notch 
depth a ~ O. 5; notch angle a ~ 100 ; Poisson's ratio ~ = 0.33; stress-strain curve 
given by figu re 25. 
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Figure 25. - Stress-strain curve for aluminum 5083-0 used in test (private communication from 
R. T. Bubsey and M. H. Jones of NASA Lewis Research Centerl. Young's modulus of elas
ticity E· 7. 79xl06 newtons per square centimeter m. 3xl06 Ib/in. 2); Poisson's ratio 
~·0.33. 
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Figure 26. - Dimensionless plane strain J integral for specimen with single edge notch 
subjected to pure bending. Dimensionless notch depth a· O. 5; notch angle a' 100; 

strain hardening parameter m' 0.05; Poisson's ratio ~. O. 33. 
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Figure ll. - Variation of ratio of dimensionless J integral to square of dimensionless 
generalized stress intensity factor Kj2 with load for specimen with single edge notch 
subjected to eure bending. Plane strain; dimensionless notch depth 'if. O. 5; notch 
angle a" IOU; strain hardening parameter m' 0.05; Poisson's ratio II" 0.33. 
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Figure 28. - Finite difference net for station (r, s). 
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